Telegram Group & Telegram Channel
Почему удаление высоко коррелированных признаков считается хорошей практикой?

Удаление высоко коррелированных признаков считается хорошей практикой по нескольким причинам:

▫️Устранение мультиколлинеарности
Когда два или более признаков имеют высокую корреляцию, это может привести к проблеме мультиколлинеарности, особенно в линейных моделях, таких как линейная регрессия и логистическая регрессия. Мультиколлинеарность означает, что признаки не несут дополнительной информации, что приводит к нестабильности коэффициентов модели. Модель может стать чувствительной к малым изменениям в данных, что вызывает большие изменения в оценке параметров.

▫️Снижение размерности
Каждый добавленный признак увеличивает размерность пространства признаков, что усложняет модель. Это может привести к проблеме, известной как «проклятие размерности» (curse of dimensionality). В пространствах высокой размерности расстояния между точками увеличиваются, и данные становятся более разреженными. Это затрудняет обучение модели, так как для правильного обобщения данных требуется больше наблюдений, чтобы покрыть все возможные комбинации признаков. Удаление коррелированных признаков помогает уменьшить размерность и улучшить работу модели.

▫️Улучшение интерпретируемости модели
Когда признаки высоко коррелированы, интерпретировать влияние каждого признака на итоговый результат модели становится сложно. Например, в линейных моделях трудно определить, какой из коррелированных признаков на самом деле влияет на результат, так как они могут взаимозависимо изменять коэффициенты друг друга.

#машинное_обучение



tg-me.com/ds_interview_lib/616
Create:
Last Update:

Почему удаление высоко коррелированных признаков считается хорошей практикой?

Удаление высоко коррелированных признаков считается хорошей практикой по нескольким причинам:

▫️Устранение мультиколлинеарности
Когда два или более признаков имеют высокую корреляцию, это может привести к проблеме мультиколлинеарности, особенно в линейных моделях, таких как линейная регрессия и логистическая регрессия. Мультиколлинеарность означает, что признаки не несут дополнительной информации, что приводит к нестабильности коэффициентов модели. Модель может стать чувствительной к малым изменениям в данных, что вызывает большие изменения в оценке параметров.

▫️Снижение размерности
Каждый добавленный признак увеличивает размерность пространства признаков, что усложняет модель. Это может привести к проблеме, известной как «проклятие размерности» (curse of dimensionality). В пространствах высокой размерности расстояния между точками увеличиваются, и данные становятся более разреженными. Это затрудняет обучение модели, так как для правильного обобщения данных требуется больше наблюдений, чтобы покрыть все возможные комбинации признаков. Удаление коррелированных признаков помогает уменьшить размерность и улучшить работу модели.

▫️Улучшение интерпретируемости модели
Когда признаки высоко коррелированы, интерпретировать влияние каждого признака на итоговый результат модели становится сложно. Например, в линейных моделях трудно определить, какой из коррелированных признаков на самом деле влияет на результат, так как они могут взаимозависимо изменять коэффициенты друг друга.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/616

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram and Signal Havens for Right-Wing Extremists

Since the violent storming of Capitol Hill and subsequent ban of former U.S. President Donald Trump from Facebook and Twitter, the removal of Parler from Amazon’s servers, and the de-platforming of incendiary right-wing content, messaging services Telegram and Signal have seen a deluge of new users. In January alone, Telegram reported 90 million new accounts. Its founder, Pavel Durov, described this as “the largest digital migration in human history.” Signal reportedly doubled its user base to 40 million people and became the most downloaded app in 70 countries. The two services rely on encryption to protect the privacy of user communication, which has made them popular with protesters seeking to conceal their identities against repressive governments in places like Belarus, Hong Kong, and Iran. But the same encryption technology has also made them a favored communication tool for criminals and terrorist groups, including al Qaeda and the Islamic State.

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

Библиотека собеса по Data Science | вопросы с собеседований from tw


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA